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Abstract. Navigating dynamic environments is a fundamental chal-
lenge in distributed robotic systems, particularly when faults occur within
the system itself, resulting in a changing connectivity graph. Classical
graph search algorithms such as A* provide optimal paths as long as
the graph is static. However, faults are a part of real life applications
and cannot be ignored; classical approaches scale poorly in such scenar-
ios because updating the graph topology requires extensive inter-robot
communication, recombination of local maps, and replanning. This pa-
per proposes a reinforcement learning (RL)-based approach that enables
agents to learn navigation policies without requiring global knowledge of
the graph. Each agent observes only its immediate neighborhood, mak-
ing locally reasonable decisions about navigating toward a target loca-
tion that collectively achieve near-optimal global performance. Through
training on randomly chosen faults, our model learns robust traversal
behaviors that adapt online to topology changes, reducing communica-
tion overhead compared to a more basic A*-based approach in a faulty
environment.
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1 Introduction

Modular Self-Reconfigurable (MSR) systems are composed of multiple auto—
nomous modules capable of changing their physical configuration to adapt to dif-
ferent tasks and environments. They offer remarkable qualities such as scalability,
versatility, and robustness, making them highly suitable for applications ranging
from exploration and construction to adaptive structures. For these promises to
be fulfilled in real-life applications, fault tolerance is paramount in the develop-
ment of any solution based on MSR [1]. Several MSR architectures have been
developed over the years, differing in geometry, actuation principles, and con-
nection mechanisms. Among these, lattice-based systems, where modules occupy
discrete positions in a 2D or 3D grid, stand out for their structured coordination
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and predictable movement models [2]. Our work focuses on fault-tolerance for
a specific type of lattice-based MSR: the 8D Catom [3]. The 3D Catom is a
millimeter-scale, quasi-spherical module that connects to its neighbors through
electrostatic attraction, allowing the collective to form and reconfigure complex
three-dimensional structures. However, this electrostatic mechanism introduces
potential points of failure. A 3D Catom ’s electrostatic face may fail to activate
due to factors such as charge dissipation, misalignment, dust accumulation, hu-
midity, or local power issues, leading to broken connections or movement errors
during reconfiguration. Given the millimeter-scale size of 3D Catoms, construct-
ing even simple structures requires a large number of modules; consequently, even
if a 8D Catom is theoretically expected to exhibit a very low failure probability,
the aggregate likelihood of multiple faults arising within a collective becomes
significant, making robust fault-tolerance mechanisms indispensable.

Currently, algorithmic solutions developed for 3D Catoms are implemented
in a simulation environment, VisibleSim [4,5], where conditions are idealized and
faults rarely considered. Yet, as we move toward real-world implementations, the
need for fault-tolerance becomes critical, as environmental variability and hard-
ware imperfections can disrupt reconfiguration sequences. Existing distributed
algorithms rely on predefined movement plans that assume all modules func-
tion correctly; consequently, a single failure can propagate through the system,
causing congestion, deadlocks, or incomplete configurations [6]. It is compu-
tationally infeasible to enumerate in advance all possible fault situations and
determine appropriate actions for each. Therefore it is crucial for us to find a
way to adapt online to faults. This challenge serves as the central motivation of
our work: developing dynamic fault-tolerance mechanisms for 3D Catoms that
provide reliable and autonomous self-reconfiguration under uncertain and imper-
fect operating conditions. In this paper we introduce a machine learning based
solution that uses reinforcement learning to adapt online to the faults simulated
in the environment.

2 Context

To form a desired structure, 3D Catoms arrange themselves in repeating config-
urations called scaffolds. These scaffolds are the skeleton of the structure, whose
goal is enabling smooth and rapid internal movements that accelerate the overall
construction process. Because of the repeating substructure of a scaffold, as long
as we can provide a method to traverse this repeating structure, traversing the
entire topology of any desired structure becomes systematically achievable.
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Fig. 1. Picture of two 3D Catom prototypes. (a) has its electrostatic connectors un-
wrapped and (b) has the connectors wrapped made for up to 6 different connections
(not the final version)

We focus our work on the porous structure introduced in [7]. This structure’s
main advantage is its ability to store meta-modules within one another. Meta-
modules refer to groups of modules arranged to form a porous configuration, as
illustrated in figure 1. Because coordinating a large number of individual modules
is highly complex, researchers have adopted meta-module strategies in which
collections of modules are treated as unified units to simplify both planning and
execution. We can break the reconfiguration process into two pieces: determining
a sequence of meta-modules to travel through, and determining a sequence of
moves to get to the next meta-module in the sequence. High-level planners like
RePoSt [8] and ASAPs [9] use Max-flow algorithms to coordinate meta-module
motions. Such approaches are highly effective in enabling meta-module relocation
through porous structures while preserving system connectivity, and incorporate
measures to avoid collisions and deadlocks through a traffic-light-like system.

These planners produce precomputed motion sequences for individual mod-
ules, which are executed deterministically during reconfiguration. In this paper,
we consider the output of these planners to be a sequence of metamodules for
each module to pass through. If we assume that the frequency of faults is low
enough that some path exists between any two sequential metamodules in a se-
quence, then the challenge that remains is to give individual modules the ability
to navigate within each metamodule to reach the next, in the presence of faults.

With full information about the state of its local metamodule, a module could
plan its path from its current metamodule to the next, for instance using A* [10].
However, obtaining a full graph of the metamodule can be very challenging and
costly on time since to gather the graph the moving module would have to send
messages to all other modules in the section and wait for their responses.

Our work being primarily focused on 3D Catoms, we need to take into con-
sideration the constraints that govern their movements. Since VisibleSim, a sim-
ulator made for MSR, is a controlled environment, developing solutions within
it allows us to take advantage of its guarantees: it prevents any movements that
would be impossible for real 3D Catoms.
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Hence we introduce a flexible, reactive layer that communicates directly with
VisibleSim, for individual module locomotion. It uses reinforcement learning
algorithm that would learn the repeating pattern in a scaffold allowing it to
make reliable decisions to move towards its final goal.

In this paper, we present a novel approach that replaces deterministic single-
module motion planning while preserving the high-level planning efficiency of
meta-module approaches.

3 Proposed Solution

Machine learning appears to be a promising approach for handling dynamic
environments, as it should be capable of guiding modules away from faults
and towards their objectives [11] [12]. However, training a machine learning
model to adapt effectively to faulty conditions typically requires large datasets
that capture the full range of possible situations and constraints, making such
an approach difficult to implement. To maintain compatibility with VisibleSim
and avoid the extensive data-collection process, we chose to implement a rein-
forcement learning algorithm capable of running millions of simulations directly
within VisibleSim. This allows the model to learn from simulated experience
while automatically respecting the constraints enforced by the simulator.
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Fig. 2. Overview of the communication pipeline between the RL agent, the environ-
ment wrapper, and VisibleSim. Numbered arrows indicate the ordered sequence of
messages.

Legend of Figure 2

1 Reset: RL agent initiates environment reset

— 2 Reset to initial state: the Environment wrapper resets VisibleSim

— 3 Randomize new goal: Goal randomizer sends new goal to environment
4 Sends new set of motions: VisibleSim sends motions to environment
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5 Sends new observation: Environment sends observation to RL agent

— 6 Initiates Step: RL agent initiates environment step

— 7 Executes the action: Environment executes RL agent’s action in VisibleSim
8 Sends A* distance: A* function sends distance calculation to environment
— 9 Sends new set of motions: VisibleSim returns updated motions

— 10 Send new observation: Environment sends new observation

3.1 Environment Wrapper

To link VisibleSim to the rl-agents each controlling a single module, we define an
environment wrapper that follows the standard Gymnasium [13], implementing
the reset() and step() methods to manage the simulation lifecycle. During reset(),
the environment restores the simulator’s XML configuration to its initial state,
clears any previous motion data, and launches the simulator to generate a new
set of valid coordinates. A new navigation goal is then sampled at random,
and the environment constructs the initial observation composed of the current
possible motions.

The step() function executes one iteration of the agent’s interaction with the
simulator. It receives the agent’s chosen action (corresponding to a target coor-
dinate), validates it against the available coordinate list, and updates the XML
configuration accordingly. The simulator is then rerun to reflect the new state,
and the environment computes a reward based on the agent’s progress toward
the goal. Each step returns the updated observation, the computed reward, and
termination flags (terminated, truncated) that signal whether the episode has
ended—either because the goal was reached or a maximum number of steps was
exceeded.

The observation comprises all information available to the agent at each
iteration. It includes the set of possible motions provided by VisibleSim as well
as the final goal. Because each 3D Catom can have up to a fixed maximum
number of possible motions, but this maximum is not always reached, we apply a
masking mechanism to invalidate the placeholder (0,0, 0) coordinates used to fill
unused entries in the discrete observation vector. At the end of the observation,
we append the goal and similarly mark it as invalid in the mask, ensuring that
the agent can identify the target location without treating it as an available
motion option.

3.2 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [14] was selected as the reinforcement
learning framework for this application due to its stability, adaptability, and
robustness in non-stationary, dynamically constrained environments. In the en-
vironment wrapper, the agent faces a spatial decision-making problem where it
must select coordinates from a variable-sized action space determined by the
current graph topology and goal configuration. Traditional value-based methods
such as Deep Q-Networks (DQNs) [15] are ill-suited to this setting because they
assume fixed, discrete action sets. In contrast, PPO, being a policy-gradient
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method, optimizes a stochastic policy directly and can naturally accommo-
date changing action spaces through action masking or contextual encoding.
Its clipped surrogate objective further mitigates destabilizing policy updates, en-
abling steady learning even when the environment or reward landscape shifts sig-
nificantly between episodes. Moreover, PPO’s on-policy formulation allows rapid
adaptation to new goals and transitions, while its ability to leverage structured
observations (e.g., spatial coordinates) supports strong generalization across di-
verse graph configurations. Together, these characteristics make PPO a theoret-
ically sound and practically effective choice for this problem domain, offering a
balanced combination of learning stability, sample efficiency, and adaptability in
an evolving, coordinate-based environment.

In summary, the environment wrapper translates the VisibleSim output (i.e.,
the set of possible module motions) into a structured input for the RL agent. This
includes a discrete observation augmented with the goal configuration, a mask
indicating which actions are valid given the current state, the reward computed
for the previous action, a termination flag (true when the goal is reached), and
a truncation flag (true when the episode exceeds a predefined step limit).

4 Experiments

4.1 Neural Network Architecture

The agent was implemented using the PPO algorithm from the Stable Base-
lines3 framework, specifically employing the [16] variant to support dynamic
action masking during training. The policy network used the ”MultilnputPol-
icy” configuration, which processes multiple input modalities (e.g., spatial co-
ordinates, graph-based features, and environmental states). By default, Stable
Baselines3 [16] initializes PPO with a two-layer feedforward neural network con-
sisting of 64 hidden units per layer and Tanh activation functions for both the
policy (actor) and value (critic) networks. This relatively compact architecture
is well-suited for environments with low-dimensional state spaces or limited vari-
ability. It also allows us to save space in the memory of each module.

4.2 Reward Function

Figuring out the reward function of the model is the most important step because
it determines how we influence the model to learn the proper features of the
structure. Since the goal was to train it on a repeating structure of 3D Catoms
we already had the graph of possible motions, and the fastest way to traverse
that graph.

Distance-Based Shaping At each timestep ¢, the reward is defined as:
Ty = Adt —C1 — (5(St S V) - Co + 5(8t = sgoal) . Rgoal
Where:
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— 8 is the current state (location) at timestep t.

— Sgoal is the state of the goal.

— Ad; = (d(s¢—1, Sgoa1) — d(5¢, Sgoa1)) Which represents progress toward the
goal measured as the reduction in A* distance between consecutive states,
where d(s¢—1, Sgoa) is the A* distance from the previous state to the goal
and d(sy, Sgoa1) is the A* distance from the current state to the goal.

— 1 is a step penalty added to promote shorter paths.

— 0() is defined as 1 if its argument is true and 0 if its argument is false.

— V set of previously visited states

— ¢ is a penalty for revisiting ) to ensure loops are minimized.

— Rgoal is a terminal reward only given if goal is reached.

The constants ci, c2, and Rgoa1 Were determined empirically through repeated
experiments to reliably reproduce the reported results. The constants used to
replicate our experiments are:

— C = 0.1
— Cp = 0.5
~ Rgoa1 = 150

4.3 Training

For the training environment, we used a repeating structure composed of three
meta-modules and simulated the movement of a single module navigating within
this pattern. Because the structure is periodic, a module only needs to learn how
to move within one instance of the repeating pattern to generalize its navigation
to the entire structure as it scales. We defined 11 target goals for the module to
reach, corresponding to positions that mimic traversing the repeated structure
and moving into place to construct a new meta-module. In our experiments, the
module starts at the bottom of the repeating structure mimicking building a
structure upwards and goes to one of the 11 goals that are the next entrance to
new repeating structures or positions to add new meta-modules to the structure.
The next step was to train the default model using the reward function. After
700,000 iterations, the model successfully reached all goals with 100 % accuracy,
requiring an average of 7.09 motions per goal, whereas A* required an average
of 6.27 motions per goal. As seen in Table 1 the RL-agent seems to come really
close to the A* algorithm’s performance, with the biggest difference between the
paths being of 3 extra steps and 5 out of 11 goals having the same path length
as A*. As seen in Figure 3 the A* path is slightly faster and more direct than
the one chosen by the RL-agent but the difference is minimal, in the case of
the trajectory in figure 3 the RL-agent requires one extra move. These results
demonstrate that RL agents can effectively traverse a static graph and achieve
path lengths comparable to those produced by the A* algorithm.

4.4 KL Divergence fault training

Having shown in the previous section that RL agents are suitable for discrete
motion and can achieve performance comparable to A* in MSR systems, our next
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%% Start module

® Goal position
A* path

®- RL-agent path

%% Start module

® Goal position

®- Initial RL-agent path
RL-agent path avoiding faults
Faulty cell

Fig. 4. Comparison of RL paths without and with a faulty cell.

objective is to demonstrate that RL agents can also operate effectively in faulty
environments, a setting where A* fails, as it relies on a static graph. To this end,
we simulated faults within our repeating structure, by removing one connector
randomly from the RL agent chosen path. In that dynamic environment it was
able to reach the goal 39 % of the time after testing for 1000 different episodes
where 1 connector is removed at random from the path. This is an improvement
over discrete options for module movements, but still not optimal. To improve
the agent at this task, training the model on an environment with random faults
on the path to the goal is the logical next step.

When fine-tuning a PPO agent, its policy parameters 6 are being updated
to improve expected return under a (possibly new) environment. However, if the
updates push the policy too far from the original policy, the agent may forget
behaviors that were good before. This would mean that the agent becomes worse
at handling graphs with no faults, in some cases being unable to reach the final
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goal. To prevent that, we decide to penalize deviation from the original (pre-fine-
tuned) policy using a KL-divergence term. Allowing us to improve performance
in faulty graphs without hindering our previous results on fault free graphs.

After 400,000 iterations of finetuning with KL-divergence we manage to
achieve a 90% success rate after testing for 1,000 different episodes where 1
connector is removed at random from the path. The average path length in the
case of a single faulty connector in the agent’s path is 7.44, slightly higher than
for the average path length in case of no faults for the same agent at 7.09. In
Figure 4 we can see an example comparing the finetuned RL-agent with a fault
in its path shown in red and the RL-agent’s usual path with no faults. The no
fault path shown in orange uses the faulty connector that the finetuned RL-agent
manages to skip using the yellow path, this change of path ultimately adds no
extra movements. We also importantly keep the 100% success rate in cases where
there are no faults. As highlighted in Table 1 the paths chosen by the finetuned
algorithm are very similar to the paths chosen by the RL-agent, the average
path length for both the RL-agent and the finetuned-agent are the exact same
at 7.09.

Goal position A* Path|RL-agent Path|Finetuned-agent
Length Length Path Length

(17, 5, 6) 8 9 9

(15, 5, 8) 9 11 10

(14, 5, 8) 8 9 8

(13, 6, 10) 6 6 6

(11, 6, 12) 6 9 6

(10, 6, 12) 7 7 8

(8, 4, 10) 5 6 6

(8, 5, 6) 3 3 3

(11, 5, 4) 2 2 2

(14, 5, 4) 7 7 8

(15, 5, 4) 8 9 10

|Avg Path Length [6,27 7,09 7,09

Table 1. Comparison of path lengths between the deterministic A* planner, the rein-
forcement learning agent, and the finetuned reinforcement learning agent for each goal
configuration on a no fault environment. The colors help compare the agents to the
A* algorithm with green being same path length yellow being one extra move, orange
being two extra moves, and finally red being three extra moves.

In the video (https://youtu.be/uhveT2gw651), we first show an example of
how the A* algorithm navigates to the goal. If there is an unreachable cell in
its path (due to a broken connector, for example), the A* path is not usable.
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However, as shown in the third part of the video, the RL agent is able to swiftly
move away from using online navigation.

5 Conclusion

Modular Self-Reconfigurable (MSR) systems promise adaptability, scalability,
and robustness, yet achieving these properties in practice requires explicit mech-
anisms for fault tolerance. Existing approaches to MSR motion planning typi-
cally rely on static, predefined graphs and therefore cannot accommodate struc-
tural changes or failures that arise in real deployments. To address this gap,
we proposed a reinforcement learning-based motion planning strategy capable
of adapting online to local graph variations, a key capability for bridging the
simulation-to-reality divide where faults are unavoidable.

Our approach integrates a PPO agent trained on a static graph with KL-
regularized finetuning, enabling online adjustment of the navigation policy as
the graph evolves. Experiments show that the agent successfully adapts its be-
havior to dynamically missing edges while preserving stable overall performance.
This demonstrates that dynamic, learning-based motion planning can compete
with classical approaches and provide resilience in scenarios where deterministic
planners alone would require a lot of extra communication.

While our study focused on the motion of a single 3D Catom, this does not
hinder coordination at the system level; multi-module interactions can be gov-
erned through a traffic-light-like system that makes sure to avoid collisions. How-
ever, the current reward design, centered on immediate changes in A* distance,
encourages short-horizon reasoning and may not fully capture global naviga-
tion structure. Enhancing this component could provide the agent with a more
informative signal and potentially yield more globally consistent behaviors. In
addition to that the starting position of the module always being at the bottom
of the repeating structure is correct for building structures up but for recon-
figurations, it would be ideal if the starting positions would be one of the 11
goals.

Future work may explore richer reward formulations, integrate more expres-
sive policy architectures, and extend the framework to multi-agent learning sce-
narios or heterogeneous fault models. Beyond algorithmic refinements, investi-
gating hybrid control strategies, where classical planning governs nominal op-
erations and the RL policy is activated only under structural anomalies, could
offer a practical path toward deploying resilient motion planning in real MSR
robots.
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